
© 2010 IBM Corporation

Using the Middle Tier to Understand Cross-
Tier Delay in a Multi-tier Application

Haichuan Wang(1), Qiming Teng(1),
Xiao Zhong(1), Peter F. Sweneey(2)

(1) IBM Research – China, {wanghaic,tengqim,zhongx}@cn.ibm.com
(2) IBM Watson Research Center, pfs@cn.ibm.com

© 2009 IBM Corporation2

Using the Middle Tier to Understand Cross-Tier Delay in a Multi-tier Application

Motivation

� Enterprise applications have multi-tier architectures
� A performance bottleneck on any tier may cause the whole system to

under perform

Database
Server

Client

Application
Server

LDAP
Server

…

Observed:
Low throughput
Low CPU utilization ?

Which tier causes

the bottleneck?

© 2009 IBM Corporation3

Using the Middle Tier to Understand Cross-Tier Delay in a Multi-tier Application

Previous Approaches

1. Collect system metrics on all tiers
– Statistics on each machine

2. Aggregate resource consumption
– Interaction between machines

3. Build a whole system interaction model

� Some Limitations
– Hard to collect system metrics on all tiers in some production

systems
• e.g. Thousands of clients; out-bound servers

– Complex
– Identify performance bottlenecks based on a large number of metrics

Database
Server

Client

Application
Server

LDAP
Server

…

© 2009 IBM Corporation4

Using the Middle Tier to Understand Cross-Tier Delay in a Multi-tier Application

Proposed Approach – Focus on the Middle-tier

� Focus on the middle-tier
– Application server (Java based)

� Track cross-tier method invocations in Java level
– Identify method invocations that handle cross-tier

interactions
– Extract “contextual information” associated with

these method invocations

� Identify the blocking in native level
– Trace thread interruptible (blocking) state
– Map back to the cross-tier method invocations

� Refer to the blocking source tier
– Based on the contextual information

Database
Server

Client

Application
Server

LDAP
Server

…

SocketRead(…)

Call Stack: LDAP Connector
IP Address: xxx ���� LDAP Server

Thread Blocking State:
SocketRead(…): Blocked

Tier of Blocking Source:
LDAP server (xxx)

Example

© 2009 IBM Corporation5

Using the Middle Tier to Understand Cross-Tier Delay in a Multi-tier Application

Solution Architecture Overview

� Constructing Cross-Tier Delay data from the following data
–Method invocation by dynamically byte code instrumentation
–Context information by dynamically instrumentation
–Thread States by JVMTI agent and a kernel module

Middleware

Application

JVM

Classes for cross tier
communications

OS

Byte Code
Instrumentation

Kernel
Module

A
nalysis E

ngine

Clients

DB
Server

LDAP
Server

…

Cross Tier
Delay Data

Thread States

Context Information

Method Invocations

JVMTI
Agent

© 2009 IBM Corporation6

Using the Middle Tier to Understand Cross-Tier Delay in a Multi-tier Application

Tracing Method Invocations – Class Instrumentation

� Tracing rules driven Java byte code instrumentation

Running
Runtime
Recorder

Trace

Tracing Rules

Class

Class

Class Loading
Method Instrumenter

Parameters Mask:

Fields:
java.net.InetAddress address;
java.io.FileDescriptor fd;

Record Return: False

Method:
java.io.InputStream _java.net.Plai
nSocketImpl.getInputStream();

Parameters Mask: 10000

Fields:
Record Return: True

Method:
int_java.net.SocketInputStream.so
cketRead0(java.io.FileDescriptor
para0, byte[] para1, int para2,
int para3, int para4);

Example Tracing Rules• Method Signature
• Parameters Masks
• Return Value Indicator
• Field List

• Method Invocation Time & Duration
• Method Invocation Stack
• Value of Parameters
• Value of the Return
• Value of the Fields

© 2009 IBM Corporation7

Using the Middle Tier to Understand Cross-Tier Delay in a Multi-tier Application

Tracing Method Invocations – Class Instrumentation (2)

� Three different approaches for dynamically instrumenting methods
– Create proxy methods

–Directly instrument the prolog and epilog of an identified method
• In case we cannot insert the proxy

–Instrument all call-sites of an identified method
• For tracing “JNI” methods in the JVM without the JNI prefix mechanism

Foo(int i)

call
Foo(int i) {

Record info before
call prefix_Foo(i)
Record info after

}

prefix_Foo(int i)

2: create
a proxyCaller

Caller
Caller

call Foo(i)

Before
Instrumentation

After
Instrumentation

Caller
Caller

Caller
Call Foo(i)

call

call1: modify
method name

Runtime Recorder
methodEntry(…)
methodExit(…)
recordPara(…)

recordField(…)
recordReturn(…)

© 2009 IBM Corporation8

Using the Middle Tier to Understand Cross-Tier Delay in a Multi-tier Application

Trace Thread Blocking

� Kernel Module
–Based on Kprobe (Linux)
–Inserted into OS scheduler
–Only collect thread interruptible

native states (blocked)

� JVMTI Agent
–Assist to map native threads to

corresponding Java threads

Application Java Process

OS Kernel Space

JVMTI agent

Kernel Module

Capture Java threads to
Native threads mapping

Relay FS

Trace
Data

Trace

Write

Capture Thread
Switch and States

/proc
file system

Config
& Info

© 2009 IBM Corporation9

Using the Middle Tier to Understand Cross-Tier Delay in a Multi-tier Application

Merge the Data – Analysis Engine

Process Method
Invocation Data

Merge Java And
Native Level

Aggregate by
Contexts (Tiers)

fd = fd@343f343f
Address = 9.186.62.68

Thread = WebContainer1
Start = 10 ms
End = 20ms
fd = fd@343f343f
Callstack = Socket Read …

Thread = WebContainer1
SocketRead on 9.186.62.68
Start = 10ms; End = 20ms

Thread = Web Container 1
Blocking start = 11 ms
Blocking end = 19 ms

Thread = WebContainer1
Blocked on 9.186.62.68
Duration = 8 ms

…

Method Invocation Trace

Thread Blocking Trace

Analysis Result

Thread = WebContainer2
Blocked on 9.186.62.68
Duration = 6 ms

Thread = WebContainer1
Blocked on 9.186.62.100
Duration = 20 ms

Thread = WebContainer2
Blocked on 9.186.62.100
Duration = 12 ms

…

Blocked on 9.186.62.68
Duration = 14 ms

Blocked on 9.186.62.100
Duration = 32 ms

© 2009 IBM Corporation10

Using the Middle Tier to Understand Cross-Tier Delay in a Multi-tier Application

Case Study

� DayTrader
–Multi-tier architecture
–J2EE application
–Simulate Stock Trading

� Deployment Details in the Study

Database
IBM DB2 8.0

DayTrader
Version: 2.0

OS
RHEL Kernel 2.6.18

JVM
IBM Java 5.0

Application Server
IBM WAS Version 6.1.0Client

Simulator

Intel Xeon 5345, 2.33GHz
2 Processors, 4G Memory

Intel Dual-Core
Xeon LV 1.66GHz,

2 Processors, 4G Memory

Intel P4 Xeon, 2.4GHz
1 Processor, HT Enabled

2G Memory

© 2009 IBM Corporation11

Using the Middle Tier to Understand Cross-Tier Delay in a Multi-tier Application

Low Clients Loads � High Clients Loads

Cross Tier
Wait Time
Analysis

from
Middle Tier’s
Perspective

WAS CPU % = 30.9%WAS CPU % = 6.5%Utilization

Increase client requests to 2900/sLimit client requests to 650/sLoad

High Clients LoadLow Clients LoadConfig

Clients Delay

DB Server Delay WAS Delay

121.26 s
(77.85%)

33.83 s
(21.71%)

0.69 s
(0.44%)

WAS Delay
29.62 s
(6.25%)

Clients Delay
50.92 s
(10.75%)

393.10 s
(83.00%)DB Server Delay

Clients cause the most
cross tier waiting time

DB server causes the most
cross tier waiting time

© 2009 IBM Corporation12

Using the Middle Tier to Understand Cross-Tier Delay in a Multi-tier Application

Analyzing Socket Read Time

� Cross tier delay on DB server is in SocketRead invocations
–Action : Study the socket read time in two loads

� Conclusion
–DB server’s slow response causes the low 30% utilization in WAS

� Action
–Upgrade DB server to 2 Xeon 5345 Processors, total 8 way.
–Result: Client Request Rate > 4,600/s. WAS CPU utilization = 51%

© 2009 IBM Corporation13

Using the Middle Tier to Understand Cross-Tier Delay in a Multi-tier Application

High Clients Loads � Upgrade DB Server

Cross Tier
Wait Time
Analysis

from
Middle Tier’s
Perspective

WAS CPU % = 51%WAS CPU % = 30.9%Utilization

Reach to over 4,600/sIncrease client requests to 2900/sLoad

Upgrade DB ServerHigh Clients LoadConfig

DB server causes the most
cross tier waiting time

WAS Delay
45.81 s
(9.94%)

Clients Delay
53.52 s
(11.61%)

361.69 s
(78.46%)

DB Server Delay

Blocking time on DB
server reduced.

WAS Delay
29.62 s
(6.25%)

Clients Delay
50.92 s
(10.75%)

393.10 s
(83.00%)DB Server Delay

© 2009 IBM Corporation14

Using the Middle Tier to Understand Cross-Tier Delay in a Multi-tier Application

Overhead Analysis

� Approaches Used to Reduce Overhead
–Kernel Module

• Only filter block threads

–Byte Code Instrumentation
• Only instrument selected method invocations
• Aggressively use final and private keywords
• Cache trace events in an array based in-memory buffer

� Resulting Overhead
–Config: DB server uses the upgraded hardware configuration (8 way)

11.3%4,169/sWith the tool

0.0%4,699/sBase

Slow DownRequest RateTracing Rule

© 2009 IBM Corporation15

Using the Middle Tier to Understand Cross-Tier Delay in a Multi-tier Application

Thank you!

Q & A

